Exercise 25

Sketch the graph of a function g that is continuous on its domain $(-5,5)$ and where $g(0)=1$, $g^{\prime}(0)=1, g^{\prime}(-2)=0, \lim _{x \rightarrow-5^{+}} g(x)=\infty$, and $\lim _{x \rightarrow 5^{-}} g(x)=3$.

Solution

Use the following trial function with four constants to satisfy the five conditions.

$$
g(x)=\frac{1}{x+5}+A x^{3}+B x^{2}+C x+D
$$

The first term, $1 /(x+5)$, automatically satisfies $\lim _{x \rightarrow-5^{+}} g(x)=\infty$, so only four constants are necessary. Take the derivative of $g(x)$.

$$
g^{\prime}(x)=-\frac{1}{(x+5)^{2}}+3 A x^{2}+2 B x+C
$$

Apply the remaining four conditions to get a system of equations for the four unknowns.

$$
\left\{\begin{aligned}
g(0) & =\frac{1}{(0)+5}+A(0)^{3}+B(0)^{2}+C(0)+D=1 \\
\lim _{x \rightarrow 5^{-}} g(x) & =\frac{1}{(5)+5}+A(5)^{3}+B(5)^{2}+C(5)+D=3 \\
g^{\prime}(0) & =-\frac{1}{(0+5)^{2}}+3 A(0)^{2}+2 B(0)+C=1 \\
g^{\prime}(-2) & =-\frac{1}{(-2+5)^{2}}+3 A(-2)^{2}+2 B(-2)+C=0
\end{aligned}\right.
$$

Solving this system yields

$$
\left\{\begin{array}{rl}
A & =-\frac{1603}{36000} \\
B & =\frac{3551}{36000} \\
C & =\frac{26}{25} \\
D & =\frac{4}{5}
\end{array} .\right.
$$

Now that the constants are known, the function is known and can be plotted versus x.

$$
g(x)=\frac{1}{x+5}-\frac{1603}{36000} x^{3}+\frac{3551}{36000} x^{2}+\frac{26}{25} x+\frac{4}{5}
$$

